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Abstract-The principle of minimum potential energy. in conjunction with a suitably assumed
strain energy density and in conjunction with suitably assumed expressions for strain and dis
plucemenl components. is used to derive a system of non-linear ordinary differential equations
for the problem of stretching. shearing. bending. twisting and warping of pre-twisted originally
straight beams, Two problems which are considered in some detail concern the combined finite
stretching and twisting of beams with doubly symmetric cross-section. and the influence of pre
twist on shear and twist center locations,

INTRODUCTION

The analysis which follows attempts a synthesis of results for stretching. bending.
twisting. and warping of prismatical beams as obtained in [3. 5]. and of results by Krenk
[2] and Hodges[ I] for the linear and nonlinear theory of pretwisted beams.

While there are similarities in our approach and in the approaches in [I. 2]. insofar
as use of the principle of minimum potential energy is concerned. and insofar as use
of the 51. Venant torsional warping function for the introduction of the warping stiffness
effect into the ensuing one-dimensional theory is concerned. there are also differences.
as will be apparent from a comparison of the respective publications.

The present study limits itself to the discussion of two specific examples of ap
plication. The first of these is the problem of finite stretching and twisting of beams
with doubly symmetric cross-section. including consideration of the effect of end sec
tion warping restraint. The second is the problem of cantilever torsion and flexure
within the range of applicability of linear theory with a view towards establishing the
influence of pretwist on twist and shear center locations.

ENERGY FUNCTIONALS AND DISPLACEMENT MODES

We begin as in 13] with the stipulation that an adequate three-dimensional strain
energy expression for a beam with originally straight z-axis and cartesian cross sectional
coordinates x. )' is of the form

(I)

In this. we assume that the restriction to problems of small finite deformations for
sufficiently slender beams implies the appropriateness of the use of the abbreviated
Green strain formulas

.:yx~ = a.~ + "'.x + a.~ a,x + v.~ II .x•

(2a)

i)'~ = v.z + lV.)' + 11.~11.)' + a,zu.,\" (2b)

In order to be able to use the variational equation for displacements which is
associated with eqns (1) and (2) for the derivation of an approximate one-dimensional
beam theory we assume as before as approximations for the cartesian displacement

t Dedicuted to the memory of Aliciu Golebiewska-Herrmann. who will long be remembered by those
who hud the privilege of knowing her.
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components Ii, ,;, II'
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Ii = /I - ye, ,-, = " + xe, II' = II' + xa + )'(3 + ~<l>. (3)

with Il, v, e, W, a , (3, ~ being seven functions of z only. and with <l> being a suitably
assumed function of x, y, and z.

In our earlier analysis of prismatical beams, <l> was taken to be the St. Venant
warping function for torsion, with differential equation lG(<I>,x - Y)].x + lG(<I>.y + x)]"
= 0 and boundary condition (<l>.x - y) dx - (<l>,y + x) dy = O. Here we modify our
definition of <I> by first introducing rotated cross-sectional coordinates ~, T]. involving
an angle of pretwist w(z), through the relations

x = ~ cos W - T] sin w, Y = T] cos W + ~ sin w, (4)

and by then stipulating that <l> be the warping function for the rotated cross-section,
with differential equation

lG(<l>.~ - T])l~ + lG(<I>.T! + W'T! = 0,

and boundary condition

(Sa)

f(~, T]) = 0; (cP.~ - T]) d~ - (cP.T! + ~) dT] = 0, (Sb)

with G = G(~, T]) a given non-negative function and with (Sa, b) implying the integral
relations

(Sc)

and

(Sd)

We note, for subsequent use, that the determination of cP. as in (Sa.b). allows us
to set. without loss of generality.

II <1>£ d~ dT] = 0, (Se)

with a Young modulus function E = E(~, T]).
Having the above definition of cP. it follows that the effect of pretwist will manifest

itself in the one-dimensional theory which is to be established by way of modifying the
approximate normal strain expression E: of prismatical beam analysis. through the
appearance of one additional term. involving a factor cP.:. as follows:

E: = W' + i(u'f + ~(11/)2 + x(a/ + 1,'6') + y«(3' - 1/'6/)

+ i(x2 + y2)(6'f + A'cP + AcP.;. (6a)

At the same time, we have as before lS], except for negligible terms x6e' and ye6'.

'Yx: = a + 1/' + 61'/ - y6' + <I>.\A.

'Y.I·: = (3 + 11/ - 61/' + .r6' + <I>.yA.

In writing (6a,b,c) we take account of eqn (4) by observing that

(6b)

(6c)

<1>.\ = <I>.E cos W - <I>.T! sin w, <1>., = <I>.T! cos W + <I>.€ sin w.
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and

<1>.; = (<I>.ET] - <I>.TJ~)w'. (8)

with an associated area clement change of dx dy into d~ dT] in the defining relation ( I ).
In order to proceed further. we now stipulate as expression for the potential energy

of external distributed or concentrated loads. consistent with the displacement ap
proximations in eqn (I).

11, = - f (fll' + q,1I + q\." + fe + mxo: + 111.\·13 + rAj d.::

- ~(F;;II' + F,;II + F,,;l' + M.n'O. + M,.;13 + T,.e + RiA);=:,. (9)

and we assume. for the sake of definiteness. a specific strain energy density function
V of the form

(10)

With eqns (I) to (10), the general results which are to be obtained now follow as
a consequence of the variational equation

om, + nd = O. (II)

with arbitrary 811', Oil. 01'. 00:, 813. oe. and OA for all values of,:, excepting the effect of
prescribed displacement boundary conditions.

OERJVATION OF ONE·OIMENSIONAL OIFFERENTIAL EQUATIONS ANO

BOUNDARY CON ()JTIONS

We write on the basis of eqns (I) and (2)

( 12)

and. on the basis of eqns (6a.b.c).

where

(l3b)

EN = ~(e')~, Ku = A'. "YII = W'A, KJ = e',

y, = 0: + II' + e,,'. "Y" = 13 + 1" - ell'. "Ys = A.

( 14b)

(14c)

An introduction of eqns (l3a,b), in conjunction with appropriate defining relations
for one-dimensional cross-sectional stress measures, into eqn (12) reduces this relation
to the one-dimensional form

On, = J(FOE/-' + MxOKx + M,.OKy + ROKR + HO"YH

+ NOEN + Q,oy, + Q"oy\. + TOK,/ + 50"Ys) dz. (15)

Equation (15) in conjunction with eqns (9), (11) and (14a,b,c) leads to a system of seven
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one-dimensional differential equations of equilibrium

F' +.r = O. (T + ,,'M, - II'M, + S'N)' - ,"Q, + II'Q, + 1=0. (16)

(Qx - SQ.,- + u'F - e'M,)' + qx = 0, M: - Qx + rnx = 0. (17)

(Qy + eQ, + I I 'F + e'Mx )' + qy = 0, M; - Q.,- + m,. = 0, (18)

R' - S - w'H + r = 0. (19)

and to a system of one-dimensional stress boundary conditions

F = F c./>. T + I I 'M" - Ii'My + e'N = Mc,h. (20)

Q, - SQ., + II'F - e'M, = Fxh • M, = M xh ' (21)

Q.,- + SQ, + ,,'F + e'M, = F,.,,, M" = M"h, R = Rh • (22)

or alternately. displacement boundary conditions

Given the form (12) and (13), in conjunction with eqn (15). we have as defining
relations for the one-dimensional stress measures in eqns (16) to (22),

(F, M,. M". R. N. H) = II (I. x, y. <1>. x 2 + )'2, T]<I>,~ - ~<I>,T)ac d~ dT], (24)

(Q,. Q,., T, S) = II (T,c, T,c, TyCX - -rd'. T,c<l>" + T,-c<l>,,) d~ dT]. (25)

Equations (24) and (25) together with eqns (5e), (6a,b,c). and (14a.b.c) imply. as a
system of one-dimensional constitutive relations, the two matrix equations

F At:' Sx/:. Sy/:.' ° Ip/:" it. EF

M, S,t:' /.,/:., K/:. r,/:.' I,p/:.' J,/:., K,

M" =
S,L' K/:., I,,/:.' f y /:. I,,,,/:.' 1,/:. Ky (26)

R 0 f,/:. r"t:' f <f>/:. f,,/:.' 14>/:.' KR

N Ip/:. /.,p/:.' 1",,1:.' f"t: Ipp/:.' 1pI:.' EN

H it. 1.'1:.' J"I:.' lcl>I:.,l"I:.' l w /:.' 'Yff

and

[
Q'] [AU 0 - S"c; S"G] ['Y']Q." _ ° Ac; S,c; - S,G 'Y.,-
T - -S"G S'G I"G -1c; KT'

S S,c; - S,G -1c; lc; 'Ys

with the elements of the constitutive matrices in (26) and (27) being given by

(27)

(A b Sxb S,,/:.', I,t:'. lyE, Kd = II (1, x. )'. x2• y2. xy)£ d~ dT] (28)

(f.b r,-/:.. r.~b f"t:') = II (x. y, <1>. x 2 + )'2)<I>E d~ dTJ, (29)

(/,,1:.'0 I",I:.'. I,-"t:'. I""d = II (I, x. y. x2 + y2)(X
2 + ),2)£ d~ dTJ, (30)

(it.. 1.'l'. J,./:.' , J'I'I:., 1,,1:.. l w d = II ll, x, y. <1>, x 2 + )'2, (T]<I>,E - ~<I>,T)]

X (T]<I>,~ - ~<I>,T)E d~ dTJ. (31)
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and

with x and y as in eqn (4), and with the ensuing relations

II (y<l>.x - x<l>.y)G d~ dT] = II (T]<I>.t - ~<I>.ll)G d~ dT], (33a)

and

II <I>.xG d~ dT] = II yG d~ dT], II <I>.yG d~ dT] = - II xG d~ dT]. (33b)

We note that the system of differential equations involving (14a,b,c), (16) to (\9),
(26), and (27) reduces to our earlier results for prismatical beams [4, 5] upon stipulating
that w = 0, identically, whereupon 'Yfl = 0 in (14b) and w'H = 0 in eqn (\9), with this
entailing a reduction of the 6 x 6 system in eqn (26) to a 5 x 5 system, by way of a
deletion of the last row and the last column in the coefficient matrix in eqn (26).

We further note that we may. as for the case w' = 0[4]. obtain a somewhat simpler
theory by stipulating that transverse shear deformability is negligible, insofar as the
effect of the stress measures 0.\ and Q\, is concerned, by stipulating in eqn (27) that
Ao = :x: and

y, = 0, 'Yy = 0, (34)

with Q.. and 0.\. then being reactive, and with the remainder of the system (27) reducing
to

(35)

As also done in [I, 2]. when w' ¥- 0, we do not make the further assumption here
of neglecting transverse shear deformability in relation to the magnitude of 5. Instead.
we retain the distinction between K7' and 'Ys as in eqn (35).

STRETCHING. TWISTING AND WARPING OF DOUBLY SYMMETRIC CROSS
SECTION BEAMS

We consider a uniform pretwisted beam of length 2L with a doubly symmetric
cross-section, acted upon by forces F: and moments M: at the ends z = ± L, with M.\.
M\,. F,,, and F\. stipulated to vanish. Because of the assumed double symmetry we have
then that M.,. M.... Q,,, Qy. a. 13. Ii, and 1/ vanish throughout, with the equilibrium
equations (16)-(19) reducing to the three relations

F = F:. T + 8'N = M:. R' - 5 - w'H = O.

In these F. T. N. R. 5, and H follow from eqns (26) and (27), with

(36)

EF = w', K7' = 8', EN = 4(8')2, KR = ~', 'Y.• =~, 'YH = w'~ (37)

in the form

F = AEw' + l!pl:.{8')2 + Jl:.W'~,

N = [pEW' + !Ippl:.{8')2 + Jpl:.1JJ'~,

H = JEW' + Vpd8')2 + J",l:.1JJ'~,

R = rcl>E~', 5 = JG(~ - e').

(38)

(39)

(40)

(41)
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An inspection ofeqn (36) in conjunction with eqns (38)-(41) indicates that the first
two relations in eqn (36) are in effect two nonlinear equations for the determination of
w' and 6' in terms of Fz , Mz , and A. The introduction of this result into the third
relation in eqn (36), with R, S, and H, as in eqns (41) and (40), then leaves a second
order differential equation for the determination of A. As regards the solution of this
differential equation, the following two cases will be of particular interest,

(i) A( ±L) = 0; (ii) R(±L) = O. (42)

It is evident that for case (i) it will be necessary to determine A as solution of a
nonlinear second-order boundary value problem, explicitly or by numerical procedures.

As regards case (ii), one finds the simpler result that both the differential equation
and the boundary conditions are satisfied upon setting A' = 0 throughout, with the
three relations in eqn (36) then becoming three simultaneous ordinary equations for
11", 6', and A, of the form

At:.w' + Hp t,{6'f + Jl:.W'A = F:.,

IpG6' - JGA + [llll:.W' + ilppl:.{6')2 + Jp l:.w'A]6' = M:,

JG(A - 6') - w'[it.'w' + Vp t:.{6'f + Jwl:.W'A] = o.

(43)

(44)

(45)

Upon setting w' = 0, this system reduces to the corresponding result in [4]. Upon
linearization, the consequences of eqns (43)-(45) are consistent with the developments
in [2]. For the nonlinear case with w' ".,. 0, we can use eqn (45) so as to express A in
terms of w' and 6', with eqns (43) and (44) then becoming a system of two simultaneous
nonlinear equations for the determinations of w' and 6' in terms of F z and M:.

TORSION AND FLEXURE OF A PRETWISTED CANTILEVER BEAM

In an extension of earlier workl3], we now use the contents of eqns (14), (16) to
(23), (26), and (27) for a consideration of the problem of a cantilever, fixed at z = L
and acted upon by forces F."Il, F"Il, and a torque M:1l at the end z = O. While it is
feasible to obtain results for this problem on the basis of the complete nonlinear system
of equations as stated, we will here limit ourselves to the consideration of its linearized
version. Furthermore, we assume for simplicity's sake that transverse shear deform
ability is negligible and that the origin of the X-, y-axis system coincides with the centroid
of the cross section.

Given the above stipulations, we immediately obtain from eqns (16) to (22) the
same as for the problem of the beam without pretwist

F = 0, Q., = F,(), 0.,. = F,.(), Mx = F.'llz. My = F"llz. T = M:(), (46)

with the equilibrium differential equation (19), and one of the stress boundary conditions
in eqn (22) remaining in the form

R' - S - w'H = 0, R(O) = O. (47)

With eqn (46) and with the assumed choice of axes and eqns (14a,b), we then have.
as the linearized version of the constitutive system (26),

Al:.W' + Jwl:.-W'A = O. H = Jell" + Jxl:.'O.' + J,·d3' + JcI>l:..'A' + JwI:.W'A, (48)

Ixl:.'O.' + Kd3' + f.,eA' + JxI:.W'A = F'llz, (49a)

Kl:.'O.' + lyeW + f."I:.,A' + Jyl:.W'A = F,'llz, (49b)

R = f.,I:.'O.' + f.,·d3' + r cl>1:.·A' + J<l>I:.W'A. (50)
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In view of the assumption of absent transverse shear deformability, the associated
system (27), with eqns (35) and (14b,c), reduces to

S == ldA - e'). (51 )

For the problem as stated, the sixth-order problem (47) to (51) for the five dependent
variables 11', a, 13, e, A is associated with the five displacement boundary conditions

I1'(L) == a(L) == I3(L) == e(L) == A(L) == 0, (52)

in addition to the one stress boundary condition in (47).
With the solution of the above, we can subsequently determine u and v from u'

+ a == 0, v' + 13 == 0, which follow from eqns (34) and (l4c), in conjunction with the
conditions u(L) == v(L) == O.

The problem as it stands now requires that we solve eqns (49a,b) for a' and 13',
as linear combinations of F..oZ, F.voZ, A', and A, with the substitution of these expressions
into eqns (48) and (50), giving Hand R as linear combinations of FxoZ, F,.oZ, A', and A.
The introduction of these into eqn (47), with fpc;S = ldD,GA - M~o), where D,e; ==
f pG - lG in accordance with eqn (51), altogether leaves a second-order differential
equation for Awith the two boundary conditions R(O) = A(L) = 0 and with the solution
A coming out as a linear combination of M~o, F..o, F.,·o. Having determined A, we will
then have further, on the basis of eqn (51), an expression for 8' of the form

(53)

with the functions f depending on cross-sectional properties, as well as on the rate of
pretwist function w'.

Given eqn (53) we can, as for the problem without pretwist[3], determine coor
dinates XT, YT of cross-sectional centers of twist, or equivalently, centers of shear xs,

Ys upon setting M~o = Fvl)XT - F.\'OYT for 8(0) = 0, in the form XT Xs == ftr (f.\'o/f:o) dz
and YT == Xs = - ftr (fxo/f~o) dz.
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